Boat-river problem

Questions

- 1. When the boat leaves the bank normally ($\theta = 90^{\circ}$), how does the drift change with increasing velocity of the boat (v_{boat})?
- 2. When the boat leaves the bank normally ($\theta = 90^{\circ}$), how does the drift change with increasing velocity of water in the river (v_{water})?
- 3. When the boat leaves the bank normally ($\theta = 90^{\circ}$), how does the time taken to cross the river change with increasing (v_{boat})?
- 4. When the boat leaves the bank normally ($\theta = 90^{\circ}$), how does the time taken to cross the river change with increasing (v_{water})?
- 5. When $v_{\text{water}} \neq 0$, at what angle w.r.t. the velocity of water (θ) should the boat start to reach the opposite bank in shortest time?
- 6. How does the least time taken to cross the river depend on velocity of boat?
- 7. How does the least time taken to cross the river depend on velocity of water?
- 8. When $v_{\text{water}} \neq 0$, at what angle should the boat start to reach the opposite bank along the shortest distance?
- 9. How does the above angle depend on v_{boat} and v_{water} ?
- 10. If $v_{\text{boat}} < v_{\text{water}}$, then can the boat, starting at point A reach the opposite point B on the other bank?

Note:

While simulations help to provide valuable insights and visualizations, a rigorous mathematical solution should always be considered as a benchmark, demonstrating not just familiarity with the concept, but a deep understanding of the underlying principles.

Learn Explore Enjoy **SIGMA** Physics resource Centre